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The fully developed laminar mixed-convection flow in horizontal ducts of rectangular, 
circular and semicircular cross-sections has been studied using a numerical model 
of the governing equations of motion, subject to the Boussinesq approximation and 
an axially uniform heat-flux condition. Dual solutions with a two- and a four-vortex 
flow pattern have been observed in all cases. The rectangular geometry, with its aspect 
ratio and Grashof number as parameters, is posed as a two-parameter problem. In 
this parameter-space, the critical points where the transition between the two- and 
the four-vortex pattern occur, follow a tilted cusp. This is akin to the phenomenon 
in the Taylor problem which has been thoroughly investigated by Benjamin and 
co-workers in a general study of bifurcation phenomena for viscous flow problems. 
The bifurcation phenomenon in circular ducts, which is essentially a one-parameter 
problem, has features similar to that observed for the Dean problem, by Nandakumar 
and Masliyah. 

1. Introduction 
The problem of free and mixed convection in enclosures has been extensively 

studied. Jaluria (1980) presents a good introduction to many facets of this problem. 
Subject to a wide variety of thermal boundary conditions, the problem of mixed 
convection in ducts has been discussed in numerous papers. Among the theoretical 
works, Morton (1959), Faris & Viskanta (1969) and Iqbal & Stachiewicz (1966,1967) 
have all used perturbation approach. Cheng & Hwang (1969), Hwang & Cheng (1970), 
Newel1 & Bergles (1970) and Patanker, Ramadhyani & Sparrow (1978) have de- 
veloped numerical solutions using finite-difference methods. Mori et al. (1966), 
McComas & Eckert (1966), Shannon & Depew (1968), Bergles & Simonds (1971), 
Kato et al. (1982) and a number of others have studied the problem experimentally. 

The specific problem that we wish to study is that of fully developed laminar mixed 
convection flow in horizontal rectangular, circular and semicircular straight ducts 
subject to the thermal conditions of axially uniform wall heat flux and peripherally 
uniform wall temperature. 

The equations governing the mixed convection flow problem are very similar to 
those of laminar flow in helical tubes (the Dean problem) and to Couette flow between 
rotating cylinders (the Taylor problem). Flow bifurcation in the Taylor problem is 
known to exist. This problem has been examined in great detail by Benjamin and 
co-workers (Benjamin 1978a,b; Benjamin & Mullin 1981, 1982; Mullin 1982) in a 
general study of bifurcation phenomena in viscous flow problems. Some of their 
essential findings for the Taylor problem areas follow: (i) it can exhibit profuse 
multiplicity ; (ii) certain anomalous and asymmetric modes of flow behaviour are 
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possible; (iii) the end effects are important, no matter how large the aspect ratio is. 
More recently Cliffe (1983) has computed some of the flow mutations predicted and 
observed by Benjamin and co-workers. 

Studies on bifurcation phenomena in the Dean problem have been more limited 
in scope. Nevertheless, dual solutions have been observed in both experimental 
and numerical studies by Cheng, Nakayama & Akiyama (1977), Masliyah (1980), 
Nandakumar & Masliyah (1982) and Dennis & Ng (1982). 

A number of investigators have perceived a close similarity between the Dean 
problem and the mixed convection problem. As pointed out already, the mixed 
convection problem has been examined by a number of investigators. Yet there is 
no record of flow bifurcation for this problem. The question that needs to be answered 
then is whether, on increasing the flow parameter (Grashof number) sufficiently, the 
mixed convection flow bifurcates as well. In this communication we examine this 
possibility for several duct geometries. An affirmative answer will lend support to 
the perception that the mixed convection problem can also exhibit a number of 
features observed for the Taylor problem. However, the establishment of profuse 
multiplicity or anomalous mode behaviour would require either careful experiment- 
ation or the use of advanced numerical methods such as the arc length continuation 
method of Keller (1977). We do not address this problem in its full complexity at 
present, but restrict it to a symmetric flow, and the transition between a two- and 
a four-vortex pattern for several geometries. 

2. Governing equations 
Two coordinate systems are employed. A Cartesian system of coordinates is used 

for the straight rectangular ducts and a cylindrical bipolar coordinate system is used 
for the case of circular and semicircular straight ducts. The latter coordinate system 
permits a smooth variation in the geometrical shape from a full circle to a semicircle. 
Such a facility is essential if the flow pattern is not to be perturbed significantly by 
changes in geometrical shape. The bipolar system of coordinates was used successfully 
by Nandakumar & Masliyah (1982) for studying the bifurcation phenomenon in the 
Dean problem. 

The formulation of the buoyancy effects was made using the Boussinesq approx- 
imation to account for the density variation insofar as it affects the body force term, 
but otherwise the density is assumed to be constant. Making use of Boussinesq 
approximation, the NavierStokes equation becomes 

V p *  
V ’ - V V ‘  - vV’V’ = -- + Pg( T, - T ) ,  

P 

where p* is the dynamic pressure, g is the gravitational force, /3 is the coefficient of 
thermal expansion and T, is the duct wall temperature and it is given as a function 
of z. The condition of axially uniform flux implies that both the wall temperature 
and the bulk fluid temperature vary linearly with the axial position. The z-direction 
of (1) gives the axial velocity equation. The prime denotes dimensional quantities. 
The Cartesian (2, y) and bipolar coordinates ( 6 , ~ )  are shown in figures 1 (a) and 1 (b), 
respectively. 

Making use of vector identities and taking the curl of both sides of the resultant 
equation, the pressure is eliminated from (1) and one obtains 

-V’ x(v’xw’)+vV’X(V’XO’)  =/3V’x(g(TW-T)) ,  (2) 
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FIQURE 1 (a). Cartesian co-ordinate system for rectangular duct. (b) .  Bipolar co-ordinate 
system for the circular geometry duct. 

where the vorticity vector is given by 

w' = V' x 0'. (3) 

The z-direction of (2) gives the axial vorticity equation. 

convection flow are given in dimensionless form as: 
The equations of motion and energy for the fully developed mixed free and forced 

Stream function equation : vz+ = -51. (4) 

Axial vorticity equation : V%2-(u*V)sa = B. (6) 

Axial velocity equation : V2w-(u*Vw) = -1 .  (6) 

Energy equation : 
w l  

V2#-Pr (u*V#) = -- - 
(w> A '  

(7) 

The condition of axially constant heat flux is reflected in the right-hand side of (7). 
The quantity A is given by 

A = flow area/a2, 
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where a is the radius for the bipolar coordinates or half-height of the rectangular 
duct for the Cartesian coordinates ; 

a+ 
ax B = Gr- for the Cartesian coordinates 

395 sin 6 sinh 7 -+ ( - 1 + cos 5 cosh 7) 
a6 

for the bipolar coordinates. 

52 is the z-component of the dimensionless vorticity, w is the dimensionless axial 
velocity, 95 is the dimensionless temperature, Pr is Prandtl number, 6% is Grashof 
number and y is the rectangular duct aspect ratio, bla. For the case of Cartesian 
coordinates (x, y)  : 

For the case of bipolar coordinates ( 5 , ~ )  : 

The flow and energy equations are rendered dimensionless as follows : 

$ = llr'/v, 52 = 52 ' / ( v /a2 ) ,  
W' 

W =  , x = x'/a,  y = y'/a, 

T,-T &'spa3 and Gr=- +=Q'/k kv2 . 
z = %'/a, 

The secondary velocities were rendered dimensionless using ( v / a )  ; k is the fluid 
thermal conductivity, v is the fluid kinematic viscosity and Q' is the heat flux per 
unit length of the duct. The term dp*/dz' is the axial pressure gradient and it is 
constant for a fully developed flow. For the case of the bipolar coordinates, the 
transforma tion 

7 = a(&--1) 

has been found to be useful in providing more grid points near the coordinate 7 = 0. 
The boundary conditions are : 

@ = w = q5 = 0 

a = llr = - = - = 0 

along the duct walls; 
aw a+ 
ax ax 

along x = 0 for Cartesian coordinates; 

aw a+ 
a7 

Q = @ = - = - = O  along 7 = 0 for bipolar coordinates; 
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for bipolar coordinates. 

aa$ i2 = -fi- along constant 6 
ag" 

GI = -p- along constant 7 
a72 

The macroscopic quantities are given by 

2DeA 
f R e = -  

P(W> ' 

where the Reynolds number Re = De'(w')/u, f is the Fanning friction factor, A is 
the flow area dimensionalized with u2, Pis  the wetted perimeter dimensionalized using 
a and De is the dimensionless equivalent diameter (De = De'/a), and De' = 4 flow 
area/wetted perimeter. 

The average Nusselt number, based on the equivalent diameter, is given by 

where $,, is the mixing-cup fluid temperature defined as 

4 b  = J', w4 U/JA w dA. 

3. Method and accuracy of solution 
The governing partial differential equations were discretized using central difference 

approximations. As both diffusive and convective mechanisms are important in this 
problem, central-difference approximations were preferred over the upwind 
differencing scheme, aa the latter might introduce parasitic effects and false scaling 
as shown by Strikwerda (1982). The resulting algebraic equations were solved using 
a successive relaxation method. The equations were solved in the order of +Q-$-w 
until convergence was attained. For the rectangular duct most of the solutions were 
obtained using a uniform grid of 21 x 21 over the domain 0 < x < y and - 1 < y < 1 .  
The adequacy of this grid size in providing accurate solutions was tested by 
reproducing established solutions for the limiting case of forced convection (i.e. 
GT = 0). The computed results shown in table 1, for different aspect ratios, agree within 
1 % of published values in all cases. Next, the results of Cheng & Hwang (1969) were 
reproduced for the mixed convection problem for Grashof numbers of up to 5OOOO. 
The flow and heat-transfer results for this case are shown in figures 2 and 3 
respectively. Next, the grid resolution was increased from 21 x 21 to 21 x 41 for the 
two cases of 15% = 1OOOOO (with the two-vortex pattern) and GT = 5OOOOO (with a 
four-vortex pattern). In  the first case the f Re and Nu changed from 20.230 and 6.194 
to 20.219 and 6.203, respectively. In the second case the changes were from 27.046 
and 8.898 to 27.014 and 8.879, respectively. The 21 x 21 grid was found to be adequate 
for predicting both the two- and four-vortex patterns over the aspect-ratio range of 
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Literature values 
Shah & London (1978) This work 

Duct Aspect 
type ratio f Re Nu f Re Nu Grid 

Rectangular 1 .o 14.227 3.608 14.247 3.597 21 x21 
Rectangular 2.0 15.548 4.123 15.565 4.115 21 x21 
Circular - 16 4.364 16.027 4.317 21 x31 
Semi-circular - 15.767 4.089 15.788 4.053 21 x21 

TABLE I 

I I 1 I I I l l [  I I I I I I l l 1  I I I I I I l l  

Pr = 0.73 2.0 - 

- 

- (f  Re), = 14.247 

- 
y = 1.0 

1.8 

1.6 - 0 - Results of 
f Re Cheng & Hwang (1969) 
a -  

1.4 - - 
- - 

1.2 - - 
- 

1 .o I I I I I l l l l  I I 1 1 1 1 1 1  

10' 10' 106 lo" 
Gr 

FIQURE 2. Friction-factor variation with Grashof number showing hysteresis behaviour for 
rectangular duct (axially uniform flux, peripherally uniform temperature). 

0.7 to 1.5 and for Grashof numbers of up to 800000. Clearly, as the aspect-ratio is 
increased to much larger values, the flow undergoes a series of transitions giving rise 
to a multicellular flow pattern. In such cases the grid resolution in the 2-direction 
has to be increased significantly. This problem was addressed recently by Lee %L 

Korpela (1983) for a purely natural convection flow in long vertical enclosures. They 
found that 10 grid points per cell were adequate. Similar tests were conducted for 
the case of circular and semicircular ducts. Table 1 shows results for GT = 0. The 
agreement is again within 1 % of the published data. We believe that the macroscopic 
results presented in this study are accurate to better than 2 %. 

4. Results 
4.1. Rectangular ducts 

First, we re-examine the problem studied by Cheng & Hwang (1969). Their results 
are extended for Grashof numbers of up to 600000. The friction-factor and Nusselt 
number results are presented in figures 2 and 3, respectively, for an aspect ratio of 
1 and Pr = 0.73. The friction-factor and Nusselt number data show a hysteresis 
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Gr 

FIQURE 3. Nuseelt number variation with Graahof number for rectangular duct 
(axially uniform flux, periplurally uniform temperature). 

behaviour as the Gr number is gradually increased and then decreased. For 
Gr > 225000 only a four-vortex solution is present while for Gr < 125000 only a 
two-vortex solution is present. Between these two limits, both types of solutions are 
possible. The bifurcation set of critical points for the two- to four-vortex transition 
is new. 

It is of interest to give the detailed manner by which the results of figures 2 and 
3 were obtained. Starting with a converged solution for a small Gr, say 1000, as the 
initial guess of the field, a converged solution was then obtained for a slightly higher 
Gr value, say 5000. Making use of the converged solution at Gr = 5O00, a new solution 
was obtained at a slightly higher GLf. In  this manner data points along ABC were 
obtained and the solution exhibited a two-vortex flow pattern. On further increasing 
Gr beyond point C,  the solution exhibited a four-vortex flow pattern along C'D. On 
gradually decreasing Grashof number along DC' it was possible to maintain the 
four-vortex solution till point B .  On further decreasing Qr beyond B B  the two-vortex 
solution is recovered in a catastrophic manner. Thus a hysteresis behaviour is present 
for this type of flow. 

When there are two truly varying parameters such as a lengthscale of a geometry 
and a flow parameter, and two possible modes of behaviour such as a two- and a 
four-vortex flow pattern, this phenomenon can be interpreted in terms of a cusp 
catastrophe as was done by Benjamin (1978a,b) in his experiments on the Taylor 
problem with a finite geometry. 

The critical Grashof number variation with the duct aspect ratio is shown in 
figure 4. For an aspect ratio of unity, the critical points (B, B') and (C, C') of figures 2 
and 3 are shown on figure 4. The curve of figure 4 was established using the method 
of bisection. The length of the arrows indicates the uncertainty in the location of the 
critical points. This curve was established using about 300 simulation runs. Both the 
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FIGURE 4. Critical Grashof number variation with aspect ratio. 

upper (2+4) and lower (4+2) critical Gr numbers are shown as a function of aspect 
ratio over the range of 0.7-2. As the aspect ratio is decreased below unity, both critical 
points increase quite rapidly. It was extremely difficult to locate the critical points 
for aspect ratios lower than 0.7 as the numerical method failed at large Gr numbers. 
Hence, the critical curves are extrapolated by dotted lines in this region. This figure 
has a strong resemblance to the tilted cusp observed by Benjamin in his experiments 
on Taylor vortices. With the friction factor as the state function and the aspect ratio 
and 6% number as the control parameters, one would obtain the folded surface that 
is typical of cusp catastrophe and figure 4 maps the boundaries of the fold on such 
a surface. 

Contours of the axial velocity w, temperature # and stream function $ are shown 
in figure 5. The effect of the buoyancy force is to shift the point of maximum axial 
velocity in the direction of the body force resulting in a steep velocity gradient near 
that wall. This is indicative of a boundary-layer structure close to the lower wall. 
In a theoretical study by Mori & Futagami (1967), such a flow structure has been 
imposed a priori on the equations in order to effect a solution at high Grmhof 
numbers. Such approximations, however, inhibit the unfolding of the four-vortex 
pattern, which is inconsistent with a model of inviscid core and a boundary layer near 
the wall. This is evident from the contours of the flow field shown for the four-vortex 
pattern at Grashof numbers of 200000 and 500000. The values of the contours of the 
stream function indicate that the flow reversal is quite intense in the vortices close 
to the lower duct wall. 

The effect of aspect ratio on the qualitative nature of the secondary 00w is shown 
in figure 6. The stream-function contours are shown for the four-vortex pattern only, 
over the aspect-ratio range of 0.8-4.4. As the aspect ratio is increased, the Grashof 
number had to be decreased gradually in order to obtain a stable converged solution. 
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FIGURE 5. Contours of axial velocity, temperature and stream function for rectangular duct. 

For a small aspect ratio, the size of the secondary vortex is small and it appears only 
at a fairly high Grashof number. As the aspect ratio is increased the size, as well as 
the strength, of the secondary vortex increases and it appears more readily at lower 
Gr numbers. On further increase in aspect ratio, the separation point on the line of 
symmetry moves towards the top of the tube (figure 6f) and then moves along the 
top of the tube and away from the line of symmetry. For a particular choice of aspect 
ratio that is consistent with a characteristic length of the cells, one would expect the 
streamline separating the vortices to become vertical. Furthermore, i t  appears that 
the size of the two central vortices will be smaller than the two end vortices and this 
is attributed to the boundary effect on the end cells. 

One can then begin to see, in figure 6 ,  the origin of the multicellular flow pattern. 
Starting with low values of aspect ratio, the transition from a two- to a four-vortex 
pattern occurs abruptly, i.e. through a bifurcation. The secondary vortices appear 
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FIGURE 6.  Flow pattern for the rectangular duct with different aspect ratio stream function 
contours: (a) Gr= 16OOO0, Pr=O.73, AR = 0.8; ( b )  100000, 0.73, 1.2; (c) 50000, 0.73, 2.0; 
( d )  40000, 0.73, 2.8; ( e )  30000, 0.73, 3.6; (f) 50000, 0.73, 4.4. 

at the lower side (i.e. the side facing the body force) and are small in size. As the aspect 
ratio is increased, they grow in size and strength until they become comparable to 
the primary vortices. At this stage, the primary flow (or mode) itself is deemed to 
consist of four vortices. With further increase in aspect ratio, two more new secondary 
vortices would appear at the lower plate through a bifurcation. They, in turn, would 
grow in size until they become indistinguishable from the neighbouring vortices. The 
end vortices would, of course, be different due to end boundary conditions. Hence, 
in the parameter space of aspect ratio and Grashof number, the multicellular pattern 
appears to emerge through a series of bifurcation processes when viewed in the 
direction of increasing aspect ratio, provided the Gr number is above a certain 
threshold value. 

The velocity component in the y direction along the centreline (z = 0) is shown 
in figure 7 for Or numbers of 100000,200000 and 500000. The velocity in the smaller 
vortex (secondary) is seen to be much stronger than in the primary vortex, indicating 
that the circulation in the secondary vortex is fairly intense. For Or = 500000 the 
flow reversal occurs at x = 0, y = -0.1. From figure 5, the stream-function contour 
separating the two vortices passes through this point and intersects the line of 
symmetry at  right angles. The axial velocity and temperature profiles along the two 
perpendicular lines through this point of separation are shown in figure 8. Along the 
line of symmetry, both profiles show a fairly strong maximum at the point of 
separation. Along the y = -0.1 line, both the profiles are essentially flat in the central 
core with sharp gradients near the boundary. At the point of separation, the axial 
velocity exhibits a very weak local minimum. This is not an aberration due to the 
numerical scheme as it is preserved with grid refinement (21 x 21 to 21 x 41). The flow 
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F’IQURE 7. The y-component velocity variation for the rectangular duct. 
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FIQURE 8. Axial velocity and temperature along two orthogonal lines through the separation 
point illustrating the saddle point at B for the rectangular duct. 

characteristics near the separation point are similar to flow through helical tubes 
(Nandakumar & Masliyah 1982). 

It is apparent from the results presented here that there is a strong similarity 
between the mixed convection flow in a straight duct and the isothermal flow in a 
helical duct, Dean problem. In the flow through a helical duct, it is the centrifugal 

6 PLM 152 
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FIGURE 9. Friction-factor variation with Grashof number for circular and semicircular ducts. 

(a) Circular duct: Nuo = 4.36364 $9 
Two-vortex: 0, Hwang & Cheng (1970) // 
Two-vortex: A, this work 
Four-vortex: 0, this work 

(b) Semicircular duct Nuo = 4.089 
Two-vortex: - 
Four-vortex : - - - - - 

FIGURE 10. Nusselt number variation with Grashof number for circular and semicircular ducts. 

force due to the axial velocity that drives the secondary flow. The axial velocity and 
stream-function contours of figure 5, the secondary velocity v of figure 7 and the axial 
velocity of figure 8 are very similar to those presented by Nandakumar & Masliyah 
(1982) for the case of isothermal flow in a helical duct. It should be noted here that 
the stream function and the axial velocity equations for the flow in a helical duct, 
subject to the loose coiling approximation, are the same as those for mixed free and 
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forced convection flow and that the axial vorticity equation is different in the form 
of the forcing function only. Thus the similarity between the two flow problems is 
not surprising. 

4.2. Circular and semicircular ducts 
The friction-factor and Nusselt number variations with Grashof number are shown 
in figures 9 and 10, respectively. The results for the two-vortex solution for the 
circular duct are in agreement with those of Hwang & Cheng (1970). Dual solutions 
are present above a critical Grashof number for both the circular and the semicircular 
ducts at Pr = 0.7 and 5.0. For the case of a circular geometry, the two- and four-vortex 
solutions showed little difference in the values off Re and Nu. For the case of a 
semicircular duct, the four-vortex solution gave values of fRe  and Nu significantly 
different to those for the two-vortex solution. This appears to be a characteristic 
feature of a geometry with a flat wall facing the body force vector, as this behaviour 
was also observed in laminar flow through helical tubes (Nandakumar & Masliyah 
1982). For convenience, this reference subsequently will be referred to as (I). 

For the circular duct at Pr = 0.7 and 5 and for the semicircular duct at Pr = 0.7, 
only the lower critical Grashof number could be found, i.e. the transition from four- 
to two-vortex solution. However, for the case of a semicircular duct at Pr = 5 both 
values of the critical Grashof numbers were established. For the latter case, the plots 
of fRe and Nu can be obtained by gradually increasing the Graahof number and 
subsequently decreasing its value as for the caae of the rectangular ducts. However, 
for the other cases, the upper critical Graahof number could not be reached due to 
the instability of the numerical scheme at high Grashof numbers. 

In  our study we initially fixed Pr at a value of 0.73. As the upper critical Grashof 
number could not be reached for this caae, the four-vortex solution could not be 
established as the primary flow. It nevertheless exists as a secondary mode in the 
range of dual solutions, i.e. between the lower and upper critical Grawhof numbers. 
Consequently in order to obtain the four-vortex solution as a secondary mode some 
‘trick ’ had to be employed. Had we initially solved for Pr = 5 for the semicircular 
duct, we would have then obtained the four-vortex solution once the upper critical 
Grashof number waa exceeded. We would have then used the four-vortex solution 
as the initial guess for a Pr = 0.73 case in order to generate a four-vortex solution. 
In  order to obtain a four-vortex solution for a Pr = 0.73 we used the analogy between 
the Dean problem and the mixed-convection problem to establish the four-vortex 
solution for the latter. A converged four-vortex solution that we had obtained as in 
(I) waa transformed and rescaled appropriately for the mixed-convection problem and 
was used aa the initial guess for the iterative solution procedure. Once a four-vortex 
pattern was established this way, it was then sustained quite readily for other cases 
by making small changes in Gr, Pr or the geometrical parameter. 

The contours of axial velocity, temperature and stream function are shown in 
figure 11 for the case of Gr = 6OOOOO and Pr = 0.7.  Both the two- and four-vortex 
patterns are evident at the same operating conditions. There is a striking similarity 
between the contours of axial velocity and temperature aa well as a similarity between 
the axial velocity for this problem and the Dean problem (see I). When like profiles 
of axial velocity and temperature drive the secondary flow, one can expect similar 
secondary-flow patterns for curved flow and buoyancy-induced flow. ‘The stream 
function contours confirm this expectation. For the four-vortex pattern, the point 
of separation along the line of symmetry appears to be a saddle point for axial 
velocity, very much like that of the Dean problem, (I). 

6-2 
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Axial velocity Temperature Stream function 

FIGURE 11. Contours of flow and temperature for Cr = 6000o0 and Pr = 0.7. 

A similar portrait of contours is shown in figure 12 for a semicircular geometry 
with a flat bottom wall for a Pr number of 0.7 and 5.0. For both geometries the 
strength of the secondary flow is weakened considerably with an increase in Prandtl 
number. This is due to an almost flat temperature profile in the core region, which 
provides a weak driving force for the secondary flow. However, dual solutions are 
present for both cases. 

In  the earlier study (I) we examined the Dean problem in helical ducts along the 
same lines as in this study. The shape of the outer surface of the duct was determined 
by one of the coordinate lines, to. It was changed from a full circle to a semicircle 
through several moon-shaped configurations. Then the effect of to and Dn on flow 
pattern changes was examined. The critical Dean number was insensitive to changes 
in 5,. This is in contrast to a rectangular geometry where the critical flow parameter 
(Taylor, Grashof or Dean number) is a strong function of the geometrical parameter, 
i.e. aspect ratio. This is because changes in Eo for a circular geometry do not change 
the lengthscale significantly. Hence, we are left with only one effective control 
parameter, viz the flow parameter, Grashof number or Dean number. This should 
then yield only a fold catastrophe with a lower and upper critical flow parameter. 
In our numerical experiments in (I) we observed only the lower critical Dean number 
and a duqlity of solutions above that number. We believe that there is an upper 
critical Dean number above which only a four-vortex solution is possible. But the 
numerical method used to solve the Dean problem failed before the upper critical 
Dean number could be reached. While we encountered similar difficulties with the 
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FIQUBE 12. Contours of flow and temperature for semicircular ducts: (a) and (b )  G = 1.6 x lo", 
Pr = 0.7; (c) and (d) G = 1.2 x lo", Pr = 5.0. 

mixed convection problem in this work, at least one case (a semicircle with Pr = 5 )  
indicates that there is a lower and an upper critical Grashof number for this problem. 
I n  the other cases we find only the lower critical Grashof number. 

5. Conclusions 
The mixed-convection flow problem in horizontal rectangular, circular and 

semicircular ducts subject to axially uniform flux and peripherally uniform tem- 
perature was shown to exhibit flow bifurcation. In  particular, for the case of the 
rectangular duct, flow hysteresis was shown to be present. Similarity between the 
mixed-convection flow problem and the Dean problem is shown to be fairly strong. 
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